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AbslrscL The exchange coupling J(1) between magnetic layers across a non-magnetic 
spacer is observed to oscillate as a function of the spacer thickness e. In an earlier work a 
theory of the oscillatory exchange was proposed which shows that the oscillation periods 
are characlerisric of Ihe spacer. n e  theory relied on the assumption of an infinitely 
large exchange splitting in the magnetic layen, which leads lo complete confinement of 
magnelic carriers of one spin in the ferromagnetic configuration of the sandwich. While 
this may be valid for strong ferromagnets such as CO or Ni, the complete confinement 
model is not a realistic approximation for iron which has holes in its majority-spin band. 
?he theory is now generalized to the case of partial confinement of carriers in the 
spacer appropriate to a sandwich with weakly ferromagnetic layers. An exactly solvable 
hole-gas model of the coupling as well as numerical light-binding resulls are presenled 
which demonstrate that the oscillation period is unaffected but the amplitude and phase 
depend critically on the degree of confinement. Asymptotic expansions for J ( t )  valid at 
finite lemperature and for an arbitrazy single tight-binding band are also obtained. ?hey 
show that the period and temperature dependence of lhe oscillations are directly related 
10 the properties of the spacer Fermi surface but lhe amplitude and phase depend also 
on the exchange splitting in the ferromagnetic layers. 

1. Introduction 

During the last few years, much attention has been paid to the properties of 
layered structures consisting of alternating magnetic and non-magnetic materials. The 
most commonly studied magnetic multilayers are those consisting of a ferromagnetic 
transition metal such as iron, cobalt or nickel and a non-magnetic transition or noble 
metal. The growth of such materials, with interfaces sharp on an  atomic scale, 
has been made possible by recent advances in molecular beam epitaxy (MBE) and 
sputtering techniques. The study of layered structures such as Fe/Cr, Co/Cr, Co/Cu or 
Co/Ru, is not only of fundamental interest but holds promise of potential applications 
in magnetic storage technology. 

It was discovered experimentally [1-6] that the magnetic moments of neighbouring 
magnetic layers are aligned parallel or antiparallel depending on the thickness of the 
intervening non-magnetic spacer laycr. This implies an exchange coupling between 
the magnetic layers which oscillates as a function of spacer thickness. The period 
of oscillations in multilayers with noble and transition metal spacers can be as large 
as 10-20A It is also found (71 that the  strength of the  exchange coupling increases 
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systematically with increasing number of d electrons in the spacer and decreases from 
3d to 46 to 5d metals. The oscillation periods observed in noble metal superlattices 
can be interpreted in teI”S of RKKY Coupling [S-lo]. However, an explanation of the 
physical mechanism responsible for the oscillations through a transition metal spacer 
is needed. 

A specific model for the exchange coupling through a non-magnetic transition 
metal spacer has been developed by Edwards el a1 [I], 121 for a sandwich consisting 
of two semi-infinite transition metal ferromagnets separated by a spacer containing 
N atomic planes. The original model is based on several simplifying assumptions: 

(i) The exchange coupling is dominated by the d band and hybridization with the 
sp conduction band is omitted. 

(ii) Interactions between electrons in the nonmagnetic spacer are neglected. 
(iii) The width of the d band is the same in the magnetic and non-magnetic 

metals. 
(iv) The number of minority-spin electrons per atom in the ferromagnet is the 

same as the number of electrons per atom of either spin in the nonmagnetic spacer. 
(v) The d band for majority carriers is full, i.e. the magnetic metal is a strong 

ferromagnet 
(vi) The five-orbital d band is replaced by a single tight-binding s band. 

Assumptions (i)-(iv) are quite reasonable for a system such as FelCr. I t  is, 
therefore, most important to relax assumptions (v) and (vi). The condition (v) is 
combined, in [ l l ]  and [12], with an additional assumption of an infinitely large 
exchange splitting in the magnetic metal. This leads to complete confinement of 
carriers of one spin in the spacer layer in the ferromagnetic configuration of the 
sandwich. The exchange potentials, which are equivalent in this model to two infinitely 
high potential barriers, thus lead to size quantization in the direction perpendicular to 
the sandwich. The dependence of the exchange coupling on the thickness of the spacer 
can then be obtained using a formal analogy with the de Haas-van Alphen effect. 
In the dHvA effect the magnetization oscillates as a function of an applied magnetic 
field and the oscillations occur because electron energy levels quantized in the field 
pass through the Fermi level as the strength of the field is increased. Similarly, 
size-quantized ieveis crossing [ne Fermi icvei as iiic s y a w  i i i i&i icSS Li Y z i i i i  coiisi 
oscillations in the interlayer exchange coupling [13]. An important feature of this 
approach is that the pcriod and amplitude of the oscillations are linked to the size 
and shape of the  Fermi surface of carriers in the spacer layer. In particular, it is 
found that the period of the oscillations depends on the position of the Fermi level 
in the band and becomes very long when the Fermi surface approaches the zone 
boundaly. 

A theoretical study [14] of the Fe/Cr system, using a canonical five-orbital d 
band but still retaining the assumption of completely confined carriers shows that 
the exchange coupling exhibits oscillations with components of different periods in 
agreement with experiment [26].  However, the calculated exchange coupling has a 
much larger amplitude than observed and has the wrong phase. It was argued that 
this discrepancy can be attributed to the assumption of complete carrier confinement 
which is unrealistic for iron. 

The purpose of this paper is to extend and generalize the preliminary results Of 

[14] for the case of partial confinement of carriers in the spacer, thereby relaxing 
the assumption of a full majority spin band (assumption (v)). This should give a 
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better description of a weak ferromagnet such as Fe. Even for a strong ferromagnet 
like CO, hybridization of the d band with the sp conduction band is expected to 
introduce effects similar to partial confinement. In the partial confinement model we 
no longer have size quantization of the carriers. This precludes direct application 
of the theory developed in Ill] and [12]. For partially confined carriers, the size- 
quantized levels are replaced by resonances and we have to modify the theory 
accordingly. In section 2, we give a general formulation of the partial confinement 
model. The actual evaluation of the exchange coupling depends on the band structure 
chosen to describe the sandwich and is discussed in sections 3 and 4 for two 
different models. In section 3, a hole-gas model is used to determine the exchange 
coupling analytically for an arbitrary exchange splitting in the ferromagnetic layers. 
This is achieved through a generalization of an asymptotic expansion obtained in 
111,121. In section 4 the asymptotic expansion, applicable to partially confined 
carriers, is extended to an arbitrary tight-binding band. The exchange coupling is 
also investigated numerically. It  is found, for both hole-gas and tight-binding models, 
that, notwithstanding the absence of size quantization, the period and temperature 
dependence of the oscillations are still directly related to the properties of the Fermi 
surface in the spacer. However, the amplitude and phase now depend strongly on 
the exchange splitting in the ferromagnetic layers. 

2. Partial confinement model 

In [ll] and [12] we carried out a comprehensive investigation of the interlayer 
exchange coupling J ( t )  for a single-orbital tight-binding band structure of the spacer 
layer using the complete confinement model. As discussed in [ll], even this simplest 
model exhibits many of the observed features of t h e  oscillatory exchange coupling. 
We have generalized [14] this work to a canonical five-orbital d band which allowed 
us to calculate the exchange coupling for a (100) FelCrlFe sandwich. This numerical 
calculation retaining the assumption of complete confinement leads to an oscillatory 
exchange which has short- and long-period components, as observed [4], but the 
calculated oscillation amplitude is much too large and has the wrong phase. Clearly, 
the assumption of complete confinement is not realistic for Fe/Cr since iron, unlike 
nickel or cobalt, does have holes in the bulk majority-spin band. It is therefore 
necessary to extend the theory to the case of partially confined carriers. 

Although, in principle, we can calculate numerically the interlayer exchange 
coupling J ( e )  for a multi-orbital band structure 1141, the computational effort is 
so large that no systematic study of the effect of partial confinement using this brute 
force approach is possible at this stage. We shall, therefore, first investigate in 
section 3 the effect of partial confinement for a hole-gas model and then extend the 
treatment to a single tight-binding band in section 4. The formulation of the partial 
confinement model is common to both cases and is described in this section. 

We use a generalized Hubbard Hamiltonian [ll] with parameters chosen to 
approximate the situation in an Fe/Cr/Fe sandwich with two semi-infinite iron layers 
separated by a chromium layer of thickness e. Since iron has about 4.8 and 2.6 
d electrons per atom in the majority- and minority-spin bands, respectively, and 
paramagnetic chromium has about 2.7 electrons per atom in each spin band there is 
an almost exact match between the chromium d band and minority iron d hand. We 
wish to retain this important feature of the Fe/Cr system in our model. We shall, 
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therefore, assume that holes moving from the minority band of the ferromagnetic 
layers to the nonmagnetic layer experience no change in their local potential, which 
is taken to  be zero. On the other hand, holes moving from the non-magnetic layer 
to the majority band in the ferromagnetic layers experience a potential step equal 
to the bulk exchange splitting V in the ferromagnet. Tb avoid confusion, we adopt 
the following convention for the spin orientation. The total electron spin moment 
of the left ferromagnet is always assumed to  point up. The up-spin orientation (t ) 
of holes moving across the sandwich is defined as that of holes in the minority-spin 
band of the left ferromagnet, the down-spin orientation (I) is that of holes in the 
majority-spin band. 

Using this convention, we can easily visualize the local potentials V“ seen by holes 
of spin U in the ferromagnetic and antiferromagnetic configurations of the sandwich. 
They are shown schematically in figure 1. 

5 1 I 
Fwure 1. Schematic representation of the majority- and minority-spin hands of the 
magnetic and non-magnetic layers of the sandwich in its ferromagnetic configuration. 
The shaded areas show the regions of the bands that are occupied by holes up to 
the Fermi bel  E p  common to  the whole sandwich. In (a) we show the polential 
well experienced by holes in the majorityspin band (I-spin holes) in lhe ferromagnetic 
configuration of the system. The up-spin holes moving fmm the minority band of the 
ferromagnetic layen to the nonmagnetic layers experience no change in their local 
potential which is taken lo be zero. In (h) we show the potentials experienced by 1- 
and 1-spin holes in the antiferromagnetic configuration of the sandwich. Ihe schematic 
representation of the bands in this case is not shown here. I t  is oblained from that in 
lhe ferromagnetic configuralion by interchanging the majority and minority bands of the 
right ferromagnet. 

It is clear that there are two parameters in our model. The exchange splitting V 
determines the magnetization in the bulk of the ferromagnetic layers and the Fermi 
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Plgure 2. Relative amplilude of the exchange coupling J ( t )  as a function of EF f V 
laken from the asymplolic formulae (3.9) and (3.10) for the hole-gas model. 

level EF. common to the whole sandwich, determines the number of holes per atom 
in the sandwich. Although EF and V could be chosen to mimic the Fe/Cr system, 
we cannot expect quantitatively correct results with a model in which the d bands in 
Fe/Cr are approximated either by parabolic or single tight-binding bands. We shall, 
therefore, treat EF and V as adjustable parameters and investigate the general effect 
of partial confinement (V < EF ) on the exchange coupling. This means that we are 
going to discuss the dependence of the interlayer exchange coupling on the exchange 
splitting V in the ferromagnetic layers. 

The interlayer exchange coupling J(t)  is defined as the difference between 
the total energies of the ferromagnetic and antiferromagnetic configurations of the 
magnetic layers per unit area of the sandwich. It was shown in [ll] that J ( l )  for the 
complete confinement model is given by 

J ( e )  = [WO - n(m)l/A (2.1) 

where n ( l )  is the thermodynamic potential of 1-spin holes in the  ferromagnetic 
configuration of the sandwich and A is the surface area. The thermodynamic potential 
O(!) is defined by 

where E ( e )  is the total energy and n(!) t h e  total number of 1-spin holes confined 
in the spacer layer in the ferromagnetic configuration. We recall that both E ( t )  and 
n( l )  are measured relative to a reference state with a constant bulk density of holes, 
Le. Q(e) = O,(l) - n,,(t), where n,,,(l) and O,,(e) are the total and reference 
thermodynamic potentials, respectively. It follows that n(!) for our infinite sandwich 
remains finite since deviations from the bulk reference state occur only in the vicinity 
of the two interfaces. 

We may use the same expression (2.1) for J ( l )  in the partial confinement case 
but the reference state now needs to be modified since we have holes with different 
densities in the non-magnetic and magnetic layers. In the nonmagnetic layer the 
reference state is that of holes with a constant bulk density appropriate to Fermi 
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energy E, and potential V i  = 0. In the magnetic layers we take as a reference 
the state of bulk holes with a lower density appropriate to the same E, but a finite 
potential V1 = V (in the case of the tight-binding model V is the local potential 
in each atomic plane). Although this method of calculating J ( t )  is not a fully 
self-consistent treatment of a generalized Hubbard model, as it is in the complete 
confinement case, it is expected to yield reliable results. 

The calculation of the exchange coupling J ( e )  requires the evaluation of a(!) 
for partially confined 1-spin holes in the ferromagnetic configuration. This involves 
a summation over all one-particle energies of holes moving in the presence of a 
square-well potential. I n  the complete confinement case the hole energies were 
size-quantized in an infinitely deep well and we performed the summation over the 
discrete energies directly by means of the Poisson summation formula. This is no 
longer possible for partially confined holes since we have to include the contribution 
of the continuous spectrum above the top of the well. We shall, therefore, express 
the total thermodynamic potential R,,, in terms of the density of states 'D( E, e ) .  The 
thermodynamic potential R,,,, at finite tcmperature T, is then given by 

where p is the chemical potential and the argument e in 'D( E, e )  indicates that the 
density of states is a function of the width of the potential well. For the gas model, 
' D ( E , l )  is clearly the total density of states for the whole sandwich. In the case of 
a tight-binding band it is the sum of all the local densities of states in each atomic 
plane of the sandwich. 

The actual evaluation of RI,, depends on the band structure chosen to describe 
the sandwich. In the next section we treat the case of a gas model which is solvable 
analytically. 

3. Effect of partial confinement of magnetic carriers for a hole gas model 

We first consider a hole-gas model of the exchange coupling between two 
ferromaxnetic layers to illustrate how our theory based on complete confinement of 
magnetic carriers in the spacer layer can be generalized to partially confined carriers. 
A special feature of the gas model is that the thickness e of the spacer is a continuous 
variable, which allows us to differentiate RIO, with respect to e. It will be seen that 
a significant simplification achieved in calculating dR,,/de is that we only require 
the value of the local density of states at the edge of the well z = rather than 
the total density of states. The exchange coupling J ( e )  is then simply obtained by 
integrating with respect to e .  This method was already used to derive equation (3.5) 
of [14] which gives the exchange coupling for a sandwich in which the magnetic layers 
remain strong ferromagnets but with finite exchange splitting. 

Using this approach, we need to determine the derivative with respect to e of the 
total density of states d'ZJ(E,t)/de. It is shown in the appendix that it is given by 

i 

Here, G(t,f!, E , k l )  is the local one-electron Green function in a mixed 
representation whick is taken to be the position representation in the direction 
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z perpendicular to the layers and the momentum representation in the direction 
parallel to the layers. The summation in equation (3.1) is over the two-dimensional 
wave vector kll parallel to the layers. Differentiating equation (2.3) with respect to e, 
substituting for d’D(E,e)/de from equation (3.1) and integrating by parts the energy 
integral in equation (2.3), we obtain 

It is straightfotward to calculate analytically G( e ,  e ,  E, kII) for energies both inside 
and outside the well and we can, therefore, evaluate dR,,/de from equation (3.2) 
numerically. The corresponding numerical results will be discussed later. However, it 
is far more illuminating to have an asymptotic expansion for J ( e )  valid for large e, 
similar to the asymptotic formula obtained in [ l l ]  in the complete confinement model. 
Our derivation of such an asymptotic formula is based on an observation that in the 
complete confinement model oscillations in J ( t )  arise because size-quantized energy 
levels of holes confined in the  spacer pass across the Fermi level E, as the thickness 
e varies. For partially confined holes, E, lies above the top of the well and instead 
of size-quantized levels we now have resonances crossing the Fermi level. Since the 
resonances have evolved continuously from bound states when E, is below the top 
of the well, it is natural to expect that the resonances at E, control oscillations in 
J ( e )  for partially confined holes. 

To formalize the argument we need to examine the Green function at energies 
E > V. It is straightfonvard to show that Im G(& e, E, kll)  is given by 

I m G ( ~ , e , E , k I 1 ) = - [ 2 m ( E - E l l - V ) / h ]  2 112 

Z ( E -  - Vsin2(pe) 
4( E - Ell)( E - Ell - V )  + VZsinz(pt)  

X (3.3) 

where p = [2m(E - Ell)/hZ]’/2 and Ell = h 2 $ / 2 m  . As anticipated, we And that 
Im G is an even periodic function of e with period R/P. This corresponds to resonant 
peaks in the density of states passing through a given energy as e is varied and the 
energy dependence of the period is the same as that for energies inside the well. We 
can, therefore, expand Im G into a cosine Fourier series. Equation (3.2) then takes 
the  form 

where a , (E ,  /q) is the Fourier component of Im G. 
It can be seen that dR,,/dt contains both non-oscillatory and oscillatory 

components. The non-oscillatory component coming from au( E, kl l )  can be readily 
recognized as the derivative with respect to e of the reference term a,,@). Since 
this constant term should be subtracted from df2,,,/de, the exchange coupling J ( e )  
is determined entirely by the oscillatory term in equation (3.4). 
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For large e, the imaginary exponential in equation (3.4) oscillates rapidly as a 
function of kll and the dominant contribution to the integral with respect to lell 
comes only from the vicinity of points at which !.3 reaches an extremum as a function 
of kI1. We can therefore evaluate this integral using the method of stationary phase. 
Since the amplitudes a , ( E , k l l )  are slowly varying functions of kll, we approximate 
them by a , ( E ,  kll) rz u . ( E , k i ) ,  where k i  is an extremal point. We can then expand 
p in the argument of the exponential function up to the second order around the 
extremal point k l  and evaluate the resultant kll integral analytically using the method 
already described in [ll].  This yields 

(3.5) 
where the second derivatives are taken at the extremal point kl and the factor a 
takes the value i for a minimum, -i for a maximum and 1 for a saddle point. We 
recall that we have dropped the non-oscillatory reference term and this is the reason 
why, in equation (3.9, we write Cl rather than R,,,. 

It remains to perform the energy integral in equation (3.5). The integrand contains 
the product of two rapidly varying functions of the energy, i.e., the Fermi function and 
the factor exp[2isep( E, kl)]. The region in which the Fermi function is essentially 
constant does not contribute to the integral because of rapid oscillations of the 
function exp[2isep( E , k g ) ] .  The only significant contribution comes from a narrow 
interval around the Fermi surface where the Fermi function varies rapidly. This 
argument is valid not only for energies E > V but also in the case of bound states 
in the well (E < V) which is discussed in [ l l ]  (see also the appendix). We can 
apply it to the integral in equation (3.5) over the whole energy range provided there 
is no discontinuity in Im G across the well at E = V. In fact, we can imagine that 
the energy integral is taken in a complex plane over a line displaced infinitesimally 
above the real axis. The Grcen function is an analytic function off the real axis and, 
therefore, a continuous function of the complex energy E + iq, where q is a positive 

smoothly with the oscillations for E above the well and we can evaluate the energy 
integral in equation (3.5) by considering only the contribution from the vicinity of the 
Fermi surface, as discussed above. The evaluation of the energy integral using this 
approximation is described in Ill] and it is quite straightforward to show that the 
relevant oscillatory term dR/de is given by 

iiifil,;Lcsiiiis; q~uiiitiry, ;; ;G;;G.w.s ;::; Gsc;;;z;;Gzs Gf lr, G f-; E ;; :kz jCiZ 

The exchange coupling J ( e )  defined by equation (2.1) can now be obtained by 
integration of equation (3.6) with respect to e. This yields 
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where we have kept only the leading term of order 1/e2 and all the derivatives are 
evaluated at the stationary point and for E = p. Naturally, the contributions of all 
the stationary points of p need to be included in equation (3.7). 

As in the complete confinement model discussed in [11], we find that J ( e )  
oscillates as a function of e with a period r / p ( p , k ”  which is determined by the 
extremal radius of the Fermi surface in the spacer layer, the oscillation amplitude 
decreases with e as l/ez (at T = 0) and the temperature dependence of the coupling 
is again governed by the velocity of carriers at the extremal points at the Fermi 
surface. 

However, an entirely new feature for partially confined carriers is the presence 
of the Fourier component a , ( p , k l )  evaluated at the extremal points of the spacer- 
layer Fermi surface. The overall amplitude of oscillations in the exchange coupling is, 
therefore, controlled by the product of two factors: the curvature of the Fermi surface 
in the non-magnetic spacer layer and the Fourier component of the imaginary part 
of the one-electron Green function taken at the edge of the spacer layer. The latter 
factor, which is absent in the complete confinement model, reflects the magnitude 
of the exchange splitting in the ferromagnetic layers and will he shown to have a 
dramatic effect on the overall strength of the exchange coupling. 

For the parabolic band considered here, we have only one extremum (minimum) 
at kll = 0 and a p / a E  = m / ( h z P ) .  aZp/akf  = l / k F  hold at the extremum (we 
take the sandwich to be parallel to the x-y plane). The Fouricr component of 
ImG(!,e,E,,O) obtained from equation (3.3) is given by 

I\ ) 

a , ( E F , k t ) =  - 2 ~ [ 8 E F ( E F - V ) + V 2 - 4 ~ ~ ( 2 E F - V ) ] 3 .  kF (3.8) 

At zero temperature, the asymptotic formula for J ( e )  valid for EF > V takes a 
very simple form 

J ( e )  = (EF/4*Ze2)C(S3V25)-1[8EF(EF- v) + vz 

- 4(EF(EF - V))’/’(2EF - V)]”sin(2skpe). (3.9) 

To pinpoint the differences between the models with completely and partially 
confined holes, we also reproduce here an asymptotic formula for holes confined to 
a finite well (EF < V). It was given in [I41 and a detailed derivation is presented in 
the appendix. The result is 

where the phase qj is a function of energy defined by 

tan $ ( E )  = - 2 1 3 ) .  

(3.10) 

(3.11) 

Let us discuss first the case of confined holes, i.e. the case when the magnetic 
layers in a sandwich are strong ferromagners such as cobalt or nickel. It can be 
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seen from equation (3.10) that for a tixed EF the amplitude of oscillations in the 
exchange coupling remains constant as a function of the exchange splitting V as long 
as V is greater than EF but there is a phase shift d~ defined by equation (3.11). 
Thus the only effect of varying Ep/V continuously from 0 to 1 is that the phase 
of the principal term sin(2kFf + 2+) shifts continuously from 0 to  2x. We recall 
that the complete confinement model used in [11] corresponds to the limit of an 
infinite exchange splitting and is thus just a special case of equation (3.10) obtained 
for EF/V + 0. 

Consider now the case of partially confined holes with E, > V corresponding 
to magnetic layers which are weak ferromagnets such as iron. It can  be seen from 
equation (3.9) that the phase locks at + = 0 for all values of (EF/V) > 1 but the 
relative amplitude of oscillations in the exchange coupling decreases dramatically with 
increasing EF/V . This is illustrated in figure 2. We note that both the amplitude 
and phase are continuous at ( EF/V) = 1 where the crossover from complete to 
partial confinement takes place. 

It is interesting to assess the accuracy of the asymptotic expansions (3.9) and 
(3.10). which are valid to order O(l /ez) ,  by comparing them with numerical results 
obtained from equation (3.2) at T = OK. We shall make the actual comparison for 
the derivative of the exchange coupling dR/dP since only this quantity can be easily 
determined numerically from equation (3.2). The numerical results for dR/de  plotted 
as a function of the spacer layer thickness e are shown in figure 3 for E,/V = 0.005 
(complete confinement) and E F / V  = 1.25 (partial confinement). The corresponding 
asymptotic results are displayed in figure 4. 

0.3 

i 

Figure 3. Derivative of the lhermodynamic potential, dfl/de, as a function of spacer 
thickness obtained numerically from equation (3.2) at T = O K  tor partial (a) and 
complete (b) confinement of magnetic carriers: (a) EpIV = 1.25 (dashed curve); ( b )  
E p / V  = 0.W5 (solid curve). dR/dP is expressed in units of the Fermi energy Ep and 
all lengths are given in  units of l l k ~ .  

Although there is very good agreement between the amplitudes and periods of 
oscillations for the two sets of results in figures 3 and 4, there appears an initial 
phase shift between the asymptotic and numerical results. This is a consequence of 
limiting the asymptotic expansion to the leading term which is of order l / fz .  It is 
shown in the appendix that when the asymptotic expansion is extended to include 
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0 6 ,a 15 20 

Figure 4. Asymptolic behaviour of dfl/df a1 T = OK as a function of spacer thickness 
f for partially (a )  and completely (b)  confined holes. Uniu of energy and length as in 
figure 3. Same parameters as in figure 3. 

terms in l/e3 this apparent phase shift disappears. However, there remains a real 
phaseshift betweem oscillations in the exchange coupling for the complete and partial 
confinement models as demonstrated in figure 3. We shall return to this interesting 
question in section 4 where our theory is extended to more realistic tight-binding 
bands. 

4. Efiect of partial confinement of magnetic carriers for a tight-binding model 

We now apply the model of Sec.2 to a sandwich with a single-orbital tight-binding 
band structure. As in [ll], we shall investigate the exchange coupling between two 
semi-infinite ferromagnets separated by a nonmagnetic layer of N atomic planes 
using the Hubbard Hamiltonian 

where cf, creates a hole of spin U on site i and ni, = c/,cia . We assume the  
hopping parameters l ij  are the same in the magnetic and non-magnetic metals and 
U, = U, for sites i in the ferromagnetic layers and Vi = 0 in the spacer layer. It 
follows that we again have two parameters in our model: the intra-atomic Coulomb 
interaction U, determines the exchange splitting V in the bulk of the ferromagnetic 
layers and the common Fermi level E, determines the number of holes per atom in 
the sandwich. Throughout this section we measure all the energies in units of W/6 ,  
where W is the band width. 

We may use equation (2.1) for the exchange coupling J(e) and equation (2.3) for 
the thermodynamic potential n(e) bearing in mind that 'D(E, e )  is the total density of 
states for down-spin holes in the ferromagnetic configuration of a sandwich described 
by the tight-binding Hamiltonian (4.1). However, since e = Na is now discrete 
(a is the separation between two neighbouring atomic planes in the spacer layer), 
we can  no longer differentiate n,,,(e) with respect to t but have to calculate R,,, 
directly from equation (2.3). Expressing the density of states in terms of the imaginary 
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part of the local Green function Grin( E, lell, N) in the mixed position-momentum 
representation, we obtain 

(4.2) 

where n labels atomic planes parallel to the sandwich and the summation over kll is 
over the two-dimensional wave vectors in the first Brillouin zone. 

The calculation of RI,,, from equation (4.2) requires the local Green function 
Grin( E, bll, N) in each atomic plane of the sandwich. However, since we are only 
interested in the change of RIO, relative to the reference a,,, it is sufficient to 
calculate the local G,, for the N atomic planes of the spacer and a finite number 
M of adjacent ferromagnetic planes on each side. For sufficiently large M, R (  N )  
becomes essentially independent of M and we find that this occurs for M in the 
range 5 to 10. 

We may determine RIO, from 
equation (4.2) numerically or use an asymptotic expansion to evaluate the summation 
over kll and the energy integral approximately. In either case, we first need to 
calculate the local Green function G,,,,(E,kll, N). For a tight-binding model, 
this can no longer be done analytically and the most convenient way to determine 
Grin( E ,  kll, N) for a stack of N + 2M atomic planes sandwiched between two semi- 
infinite substrates is to use the method of adlayers 1151 . Since the method of adlayers 
starts from the surface Green function for a semi-infinite substrate which is known 
analytically [16], the local G,, is obtained with machine accuracy and no numerical 
error is introduced at this stage. 

We first describe the numerical evaluation of RI,, at zero temperature for a simple 
cubic lattice and (100) orientation of the layers. It is convenient to convert the 
summation over kll in equation (4.2) into an integral introducing a two-dimensional 
density of states Dzd( Ell) which yields 

a,,,= - ( 1 / ~ ) / ’ d E i l ~ z ~ ( E ~ I ) / - ’ ( E - E F ) I m ~ C , , ( E , ~ ~ ~ , N ) d ~ .  - 2  -m n (4.3) 

The integration over E requires a large number of energy points since 
Im C( E, Ell, N )  has poles on the real axis. In order to gain speed and accuracy, 
we perform this integration in the complex plane using a method described in [17]. 
However, even with this extremely efficient integration method, the evaluation of a 
to the required accuracy takes many hours of computer time. 

A significant simplication can be obtained for Fermi energies -3 < E, < -1 for 
which it is a reasonable approximation to use a constant DZd(Ell). We take it equal 
to a for lElll 6 2 and zero othenvise (we recall that we express all energies in units 
of W/6). Using this approximation, integrating by parts in equation (4.3), and noting 
that E, Grin( E, Ell, N )  is a function of the single variable E - Ell, we can reduce 
equation (4.3) to a single energy integral 

As in section 3, we now have two options. 

”. 

R ( N ) = ( 1 / 8 ? r )  
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x I m G [ G n , ( E + 2 , N ) - G , , ( E - 2 , N ) ] d E .  
n 

(4.4) 

This is evaluated numerically using again a complex contour integration and we 
obtain J( N), given by equation (2.1), by subtracting the appropriate reference 
contribution as described in [14]. The results for complete (EF/V=0.005) and partial 
(EF/V = 1.25) confinements are displayed in figure 5. In both cases E, = 0.5, 
measured from the bottom of the spacer band, was chosen to reproduce rapid two 
monolayer oscillations observed in Fe/Cr. 
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Flgurr 5. Comparison of the amplitudes and phases of MCillationS in the exchange 
coupling J obtained numerically from equation (4.4) far a simple cubic tight-binding 
model. J is plotted as a function of the number N of atomic plana in the spacer layer 
for completely and partially confined carrien. I h e  squares correspond to the case where 
the Fermi level lies above the well (EFjV = 1.25) whereas the circles are for a Fermi 
level lying inside lhe confining potential (EFIV = O.Oa5). EF = 0.5 measured from 
lhe bollom of the spacer band and J is given in units of 2lfl = W/h,  where W i s  the 
band width. 

As for the hole-gas model, t he  most important feature is the dramatic reduction 
of the amplitude which occurs in going from complete to partial confinement. Such 
a large reduction is quite remarkable considering that the number of holes we have 
introduced in the majority-spin band is quite small ( n t / y l  z 0.09). There is also a 
phase shift of almost exactly 7r between the two curves in figure 5. We recall that 
in the hole-gas model the corresponding phase shift was somewhat smaller indicating 
that it is a model dependent quantity. 

In the approximation of a constant two-dimensional density of states we are 
restricted to the range of Fermi energies -3 < E, < -1. For other situations we have 
to use equation (4.3) which is computationally so demanding that a systematic study 
of J ( ! )  becomes very difficult. The numerical approach can be immediately extended 
to a multi-orbital band structure but the  computational effort becomes prohibitive. 
It is therefore essential to obtain, as an alternative, asymptotic expansions for the 
exchange coupling of the type discussed in section 3. For this purpose we go back to 
equation (4.2). 
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Figure 6. lmaginaiy pan of the tolal normalized Green function as a funclion of 
spacer thickness N for a simple cubic tight-binding band wilh (103) orientation of the 
layers. It is evalualed at the Fermi energy Ep = 0.5, measured from the bollom of 
the spacer band, and at 1hc extrema1 point k, = k, = 0 for panially confined carriers 
(EF f V = 1.25). The solid line is a cubic spline fit to the numerical data. 

In our derivation of an asymptotic formula for J ( e )  we are guided by the results 
of [ll] for the complete confinement model and by the formalism developed in 
section 3 for a hole-gas. The asymptotic expansion relies on the observation that, in 
the complete confinement model, the density of states at E, oscillates as a function 
of spacer thickness and oscillations occur whenever a size-quantized level passes 
through the Fermi level. At the crossover from complete to partial confinement 
( E  = V), the bound states evolve continuously into resonances. It follows that 
the density of states for E above the well also oscillates whenever a resonance 
crosses the Fermi level. In fact, we showed explicitly for the hole-gas model that the 
imaginary part of the one-electron Green function at the edge of the well (z = e) 
is  R periodic function of e. This allowed us to expand it in a Fourier cosine series. 
A similar expansion can be used for the tight-binding model. However, since the 
imaginary part of the total Green function is proportional to the spacer thickness 
e = Na, it is not a periodic function of N .  From our discussion of the hole-gas 
model following equation (3.3), the relevant quantity which is expected to display a 
periodic behaviour is Im E,, Grin( E, Ell, N ) / N .  This is illustrated in figure 6 for a 
simple cubic band and (100) orientation of the layers. We, therefore, represent 
I m C n  G,,,,( E, E , N ) / N  by a Fourier cosine series. We keep again only the 
oscillatory terms since the non-oscillatory part leads to the reference thermodynamic 
potential which has to be subtracted from $2,, in order to obtain J ( e ) .  The oscillatory 
component is given by 

I1 

m 

(UN) Im Grin( E, kll, N )  = Re a ,  ( E ,  exp[2isNaP( E ,  kll )I (4.5) 
n a = l  

where T/@( E ,  kll) is the oscillation period. Transforming the summation over hll 
into an integral over the two-dimensional Brillouin zone, we obtain 
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x In[ l+ e(W-E)/bT 1 exp[2isNaP(E,kll)l.  (4.6) 

As in section 3, the integration over k is performed using the method of 
stationaly phase. It is clear that, for large h, the exponential factor is a rapidly 
oscillating function and only those regions in which p( E, El ) is stationary with respect 
to kll will make significant contributions to the integral. d e  approximate the Fourier 
coefficient a , (E ,k l l )  by its value at the stationaly point kl and expand p in a Dylor 
series about k\ up to second-order terms to obtain 

(4.7) a , ( ~ , k \ ) I n [ l  + e(P-E)/hT z*Na@(E.ki)dE le 

where the factor U is defined as in section 3. Tb perform the remaining energy 
integral, we first integrate by parts and then note that the region in which the Fermi 
function is essentially constant does not contribute to the integral because of the 
rapid oscillations of exp[2isNap( E, kl)]. The only contribution comes, therefore, 
from a narrow interval around the Fermi surface where the Fermi function varies 
rapidly. The evaluation of the energy integral is then straightforward and leads to the 
following asymptotic formula for the exchange coupling 

Before equation (4.8) can be discussed, the precise meaning of p ( p , k l )  
needs to be clarified. In principle, the oscillation period n/p and its derivatives 
could be determined numerically from the computed normalized Green function 
(l/N)ImC, C , , ( p , k p ,  N )  but the usefulness of the asymptotic lormula (4.8) 
depends on our ability to locate stationary points of p ( p , k i ) .  For a general 
(multi-orbital) band structure this is dillicult. However, we propose below a working 
hypothesis to determine analytically the stationary points kl and the period for any 
single-orbital tight-binding band and for any orientation of the sandwich provided 
it is parallel to a plane of reflection symmetry. Under these conditions, we 
showed in [ll] that size-quantized energy levels for completely confined carriers are 
E(k l l ,k ,  = nn /N + l), where E(kII ,  k,) is the  bulk tight-binding energy and 
n = 1, 2, ..., N. Stationary points kl are then simply the extrema1 points of the 
perpendicular wave vector k l (p ,k l l ) .  Our working hypothesis is that, by analogy 
with the hole-gas model, the oscillation period for partially confined carriers is the 
same as for carriers confined in an infinitely deep well, i.e. 

b ' ( ~ , k l )  = k l b . k l )  (4.9) 
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This appears to be justified by comparison with the numerical calculation described 
below. 

It can he now seen that equation (4.8) complementc; the asymptotic expansion 
for J(N) derived in [ll] for the complete confinement model. The oscillation period 
and temperature dependence of J(N) are unaffected by deconfinement since they are 
determined entirely by the spacer Fermi surface. On the other hand, the amplitude is 
controlled not only by the curvature of the spacer Fermi surface, as is the case in the 
complete confinement model, but it also depends critically on the exchange splitting 
in the magnetic layers via the Fourier component a 8 ( p , k l )  (to avoid confusion, we 
recall that U$(+, ki) is not the same quantity as for the hole gas since, in section 3, 
we Fourier analysed the Green function a t  the edge of the well z = e) .  

Given that (1/N) Im E, Gnn(p, k;, N) is only known numerically and is defined 
only for discrete N, it is not as simple to determine its Fourier components a 3 ( p , k l )  
as in the gas model. This is particularly true for short-period oscillations where fitting 
a Fourier series is not entirely unique. The most stringent test of the asymptotic 
expansion (4.8) is, therefore, to compare it at T = OKwith our numerical calculations 
for the simple cubic tight-binding model using EF = 0.5 (measured from the bottom 
of the spacer band and given in units of W / 6 )  which leads to a two-monolayer period 
(see figure 5). The corresponding bulk Fermi surface 

E,  = -[COS(k,Q) +CQS(k,a) -t coS(k,Q)] (4.10) 

has only one extremum (minimum) at k, = k, = 0 (we take the layers to be 
parallel to the z-g plane). The curvature of the Fermi surface and ( a p / a E )  arc, 
therefore, easily determined from equation (4.10). Assuming partial confinement 
E,/V = 1.25, we obtain the Fourier component a,(EF,O) simply by fitting a 
cosine wave to the computed ( l / N ) l m C ,  G , , , , ( p , k I , N )  shown in figure 6, thus 
neglecting higher harmonics. The corresponding exchange coupling J (  N) calculated 
from equation (4.8) is shown in figure 7 together with the exact numerical result 
obtained from equation (4.4). The agreement is remarkably good and appears to 
justify the assumptions leading to the asymptotic formula (4.8). 

5. Conclusions 

We have generalized our earlier theory [ l l .  12,141 of the oscillatory exchange coupling 
between two transition-metal ferromagnets separated by a non-magnetic transition 
metal spacer to the case of a sandwich with magnetic layers which have holes both in 
the majority- and minority-spin bands (weak ferromagnets). 

In sections 3 and 4 we investigated comprehensively the interlayer exchange 
coupling using hole-gas and tight-binding models for the d bands of the metals 
forming the sandwich. We determined the coupling numerically from the total energy 
difference between the ferromagnetic and antiferromagnetic configurations of the 
sandwich and developed general asymptotic expansions valid for large thickness e of 
the spacer layer. The main results obtained from our numerical studies and from the 
asymptotic expansions are essentially the same for both models. 

(i) The oscillation period and temperature dependence of the  interlayer coupling 
are determined entirely by the properties of the spacer layer Fermi surface and 
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Flgure 7. Comparison between the asymptolic behaviour (solid curve) of the exchange 
coupling J ( N )  oblained from equation (4.8) for a simple cubic tight-binding hand 
and the exact m u l f  (dashed curve) obtained calculaling the thennodynamic potential 
numerically. m e  parameters are chosen so as to correspond to partial confinement of 
the magnetic carriers (EFIV = 1.25). In the asymptotic expansion (4.8) the Fourier 
weeicient a l ( E ~ , O )  = 0.15 is simply obtained from lhe amplitude of the oscillations 
in Im En G,.(Ep, k\, N )  f N  shown in figure 6. 

are thus independent of the exchange splitting (magnetization) in the ferromagnetic 
layers. (As in [l l ,  121, we refer here to the Fermi surface of d electrons; sp electrons 
are not included in our model). 

(U) The overall amplitude of the exchange coupling is determined by two factors: 
the curvature of the Fermi surface in the nonmagnetic spacer layer and the hulk 
exchange splitting in the ferromagnetic layers. When we move, keeping a k e d  Fermi 
energy, from a ferromagnet with an infinitely large exchange splitting (the only case 
considered in [l l ,  121) to a ‘just strong’ ferromagnet, the amplitude remains constant 
but it drops dramatically as soon as the ferromagnet becomes weak (holes in the 
majority-spin band). 

(iii) The asymptotic formula for the hole-gas model valid to order I /@ shows 
that the phase of oscillations in the exchange coupling changes through 2rr as we 
move from an infinitely strong ferromagnet to a ‘just strong’ ferromagnet but then 
locks at zero at the crossover to a weak ferromagnet and remains independent of the 
exchange splitting. This latter result is also obtained in our numerical calculations for 
a single-orbital tight-binding band. 

(iv) Numerical studies both for the gas and tight-binding models show, however, 
that there is a definite phase shift between the oscillations in the exchange coupling 
obtained for very strong and weak ferromagnets. The same result is obtained when 
the asymptotic expansion for the hole-gas model is extended to include the terms in 
l/e3. However, the phase shifts obtained for the hole-gas and tight-binding models 
are different indicating that the phase is a model-dependent quantity. 
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We pointed out in the introduction that our most recent numerical calculations of 
the exchange coupling for Fe/Cr/Fe sandwich employing a canonical five-orbital d band 
and assuming an infinitely large exchange splitting grossly overestimate the oscillation 
amplitude and have a wrong phase. The results of sections 3 and 4 strongly suggest 
that both these discrepancies may be removed when the assumption of the infinitely 
large exchange splitting is relaxed. This requires generalization of the present theory 
to a multi-orbital band structure. Although such a generalization is possible both 
for the numerical approach and the asymptotic expansions, the computational effort 
involved in the former is prohibitive. Asymptotic expansions appear, therefore, much 
more promising. 

Finally we wish to discuss a connection between our theory and RKKY. Our 
conclusion that the oscillation periods are characteristic of the spacer metal, whereas 
the amplitude and phase depend strongly on the matching between the bands in 
the spacer and ferromagnet, is similar to that of Bruno 1181. He calculates the 
coupling between two magnetic transition-metal monolayers immersed in a simple or 
noble metal. A synthesis of our work and Bruno’s, applicable to both transition- and 
noble-metal spacers, will be achieved when our tight-binding calculations are further 
extended to include hybridization of the d band with the sp bands. 
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Appendix 

In this appendix we give an alternative simpler method of calculating the exchange 
coupling between the  ferromagnetic layers of a sandwich using a hole-gas model. In 
contrast to the formalism of section 3, the method presented here allows us to go one 
step further and include terms in l /e3 in the asymptotic expansion of J ( e ) .  However, 

only applicable to the exchange coupling at zero temperature. 

the z direction and depth V can be written as 

it ildS the seriuus cirawbacit tkdt it is nut gcncraiiubis iu ail ailiiiaiy i j ~ < ~ t i ;  ais” ii b 

The Hamiltonian for a hole-gas in the presence of a potential well of width e in 

H = -(hz/2m)V2 + V - V O ( z )  + V O ( z  - e) (‘41) 

where O ( z )  is the step function having unit value when z 2 0 and zero otherwise. 
The basis functions Ik,l, 2‘) we use are written in a mixed momentum-position 
representation, with normalization 

( k ~ l , z ” ~ k , l , z ’ )  = 6 ,  11 ,,, II 6 ( z ” -  2’). (A2) 

As in section 2, we first calculate dQ,,,/de. At zero temperature it reads 
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where the zero of energy has been chosen to be at the bottom of the well. The 
density of states D(E, E) is given by 

D ( e , E )  = (-1/7r)ImTr(E- H+iq ) - '  ('44) 

where 11 is an infinitesimal positive quantity and the trace consists of a summation 
over k and an integration over z. Since (E  - H + iq)-' depends on e only through 
the Hamiltonian If, it is easy to show that 11 . 

(a) 
I t  follows from equation (Al) that 

(A61 
aH - = - V 6 ( z  - e )  = -vle)(el ae 

which yields 

where we have used the closure relation / d z I z ) ( z I  = 1 to perform the integration 
over z. Equation (3.1) follows immediately from equation (A7). 

'lb perform the integration over kll,,we do not use here the method of stationary 
phase but turn the summation into an integral involving the two-dimensional density 
of states D,D(Ell). Recognizing that fora  parabolic band DZD(Ell) = (1/27r)(m/hz) 
is a constant, we can write dR,,,/dt in the form 

V EF 

x - Im(el( E - 

- - - - - D m ( E l 1 ) l w d E 1 ( i  d%, - ( E - E F )  
de  A 

a 
- H ( e )  + iq)- 'le)dE a E  

= -DZD(EIl) V lwdEll lEF(E- EF) 
7r 

(A8) 
a 

aEll 
x - Im(el( E - - H(e)  + iq)-lIe) d E  

where H ( t )  is the Hamiltonian in the direction perpendicular to the sandwich 
and, in the last equation, we used the symmetry between E and E to transform 
the derivative with respect to E into a derivative with respect to AI,. Integrating 
over Ell and introducing the one-electron Green function at the edge of the well, 
G(e,e,E,Ell = 0) = ( t l ( E - H + i q ) - l l t ) ,  we finally get 

1' EF %- - - -Dz~(E l l ) j !  (E-  E , ) I m G ( e , e , E ) d E .  
de 7r 

The one-electron Green function at the edge of the well can easily be calculated 
analytically. Above the well (E > V), it is given by equation (3.3) with Ell = 0. 
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Inside the well (E < V), the imaginary part of the Green function reduces to a sum 
of delta functions corresponding to size-quantized energy levels. It is given by 

A rmc(e,e ,E)  = - , p C a ( p e + ~ ~ , - n ~ )  
n 

where p = (2mE/tr2)'/2 and the phase shift II, is a function of energy defined in 
equation (3.11). I m G ( t , t , E )  is, of course, a periodic function of e and can be 
expanded in a Fourier series. This leads directly to 

Here we write R rather than n1,, since we have dropped the non-oscillatory 
reference component. Successive integrations by parts of equation ( A l l )  followed by 
integration with respect to e then yield the exchange coupling J ( e )  to  any power in 
l/e. To order 1/e2, we obtain equation (3.10) but it is now possible to include higher- 
order terms. A similar procedure can be followed to obtain the exchange coupling 
at T = OK when the Fermi level lies above the top of the well. As mentioned 
in section 2, when only terms in l/e2 are included in the asymptotic expression 
for dR/de , there appears a phase shift between the asymptotic results and the 
numerical results obtained from equation (3.2). lh investigate this discrepancy we 
have calculated terms in l /e3 in the expression for dfl/de. We do not display this 
result here since it is easily obtained but leads to rather lengthy expressions. When 
the higher-order terms are included the apparent phase shift disappears. 
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